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Abstract

A novel type I arabinogalactan (AG-I) polysaccharide (EPS) from Epiphyllum
oxypetalum (DC.) Haw's flowers is hypothesized to possess immunomodulatory
activity. This study investigated EPS's effects on immune functions and its
potential mechanism for enhancing intestinal health in immunosuppressed mice.
The results showed that supplementing EPS significantly alleviated immune organ
damage, increased the thymus index (p <0.01), and regulated the key immune
factors, including the tumor necrosis factor-alpha (TNF-a), immunoglobulin A
(IgA), and complement 3 (C3) in the liver (p <0.05). EPS promoted the expres-
sion of intestinal immune barrier and chemical barrier proteins such as interferon-
v (IFN-y) and mucin 2 (MUC2) (p < 0.05), effectively repairing intestinal damage.
EPS improved the diversity and structure of intestinal microbiota in im-
munosuppressed mice (p <0.05) and significantly altered the abundance of
intestinal immune-related microbial taxa, including Lactobacillaceae and Lacto-
bacillus (p <0.01). Furthermore, EPS supplementation altered intestinal lactic
acid metabolism, significantly increasing lactic acid levels by up to 3.4-fold
(p <0.01), and enhanced the expression of Gpr81, Wnt3a, and B-catenin proteins
at the bottom of the colonic crypts, which may repair the intestinal physical
barrier. Overall, EPS represents a novel AG-I immunomodulatory dietary poly-
saccharide that enhances immunity and improves gut health.
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The Epiphyllum oxypetalum (DC.) Haw (EOH), belonging
to the Cactaceae family, is celebrated as the “Queen of the
Night” for its unique characteristic of blooming at night
(Thiago et al.,, 2014). This perennial succulent plant
holds an irreplaceable ornamental value in the gardening
community due to the rarity and brief blooming period of
its flowers (Prajitha et al., 2019). In traditional Chinese
culinary culture, the flower of the EOH is not only regarded
as a delicacy but also recorded in the Chinese Pharmaco-
poeia “Chinese Materia Medica Dictionary” for its signifi-
cant pharmacological activity in treating gastrointestinal
diseases and tuberculosis. Moreover, in modern applica-
tions, extracts from the EOH are widely used in popular
cosmetics, providing moisturizing, whitening, and anti-
oxidant functions (Baek et al., 2019; Feng et al., 2024).
However, despite the diverse health benefits presented by
the EOH, the scarcity of its flowers due to the lack of
breakthroughs in long-term cultivation techniques limits its
application on a large scale (Lesmana et al., 2022; Thiago
et al., 2014; Upendra & Khandelwal, 2012), and the specific
roles that the components of the EOH, especially its active
ingredients, play in the body remain unclear.

Through over a decade of cultivation technology
research and development, a large-scale EOH planting
farm spanning 500 acres has been established in Zizhong
County, Sichuan Province, China (Ma et al., 2023). This
farm has increased the yield of EOH per acre from
approximately 5000 flowers to about 50,000 flowers,
marking a tenfold increase. The new cultivation tech-
niques have also extended the blooming period from the
original 4 months of the year to 8 months, with con-
centrated flowering occurring approximately every
20 days. These technological breakthroughs have not
only promoted the commercial cultivation of EOH but
also opened up possibilities for further exploration of its
nutritional and medicinal values.

The EOH is rich in a variety of beneficial components,
including proteins (14 mg/g), fatty acids (4.6 mg/g), and
vitamins (0.18 mg/g) (Upendra & Khandelwal, 2012).
Compared to these nutrients, mucus polysaccharides are
one of the most abundant carbohydrates in Cactaceae
plants, accounting for more than 18% of the dry weight of
flowers and stems (Gheribi & Khwaldia, 2019; Sepulveda
et al., 2007). These polysaccharides typically have high
molecular weights and branched structures (Saeidy
et al., 2021), which is also the case with the EOH. Natural
polysaccharides, as a class of biologically active macro-
molecules with potent functionalities, offer diverse health
benefits, such as immunomodulation (Guo et al., 2023),
antitumor (Li et al., 2023), antidiabetic (Wu et al., 2024),
and liver-protective activities (Wang et al., 2023; Yuan
et al., 2022). The biological functions of different poly-
saccharides are closely related to their structural variations,
including monosaccharide composition, glycosidic bond
types, molecular size, and the degree of branching. These

structural characteristics determine their specific roles in
biological processes such as cell recognition, signal trans-
duction, and immune response (Mohammed et al., 2021).
Currently, the biological activities of polysaccharide
derived from EOH remain unknown.

In the preliminary phase of this study, a novel water-
soluble polysaccharide (EPS) was isolated from EOH, with
a maximum solubility of 2.75 mg/mL. Preliminary results
indicated that the polysaccharide is composed of arabinose,
galactose, glucose, xylose, mannose, fructose, and galactu-
ronic acid. Among these, the molar ratios of arabinose and
galactose monosaccharides are respectively 11.480% and
53.791%. The weight-average molecular weight of the EPS
reached 5.577 x 106 Da, and its main chain structure is
B-Galp linked by (1—4) bonds (Supporting Information
S1: Figure S1) (Ma et al., 2023). Compared with type II
arabinogalactan (AG-II), which has a backbone structure
linked by (1—6) and/or (1—3)-Galp, these results indicate
that the EPS is a typical type I arabinogalactan (AG-I)
(Ferreira et al., 2015; Saeidy et al., 2021). The functional
activities of natural polysaccharides are closely related to
their specific molecular structures. Compared with other
natural polysaccharides, EPS has notable characteristics,
with its molecular weight being about 8§-600 times that of
these polysaccharides (Wang et al., 2023). Related studies
show that high molecular weight polysaccharides often act
as dietary fibers/prebiotics interacting with the body, such
molecules are difficult to digest in the small intestine and
enter the colon, providing substrates for the complex bac-
terial ecosystem there, thereby regulating the body's intes-
tinal flora imbalance and metabolic disorder (Bamigbade
et al., 2024; Rastall et al., 2022). Moreover, the total molar
ratio of arabinose and galactose in the EPS is higher than
that of most other AG-I polysaccharides (Saeidy
et al., 2021), which helps the polysaccharide to form specific
conformations, achieving a good response in stimulating
the immune system (Chen et al., 2022). Overall, EPS may
exert a beneficial effect on the host's immunity through the
gut microbiota.

Despite the EOH being an important plant for both
medicinal and dietary uses as well as for ornamental
purposes, its flowering period is short and raw materials
are hard to obtain, leading to limited research on the
immunomodulatory effects of its main component—
EPS. Furthermore, whether these effects are related to
gut microbiota remains unknown.

Therefore, in this study, we used a cyclophosphamide
(CTX)-induced immunosuppression model in mice to ex-
plore the potential immunoenhancing activity of AG-l type
polysaccharides derived from EOH. Lentinan, with strong
immunomodulatory activity and widely used in clinical
settings (Vijayaram et al., 2022), was applied as the positive
control. Through 16s high-throughput sequencing, we
investigated the possible immunomodulatory mechanisms
of EPS from the perspective of gut microbiota. This
research provides the first report on the immune effects and
preliminary mechanisms of polysaccharides derived from
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EOH based on gut microbiota, offering new insights into
the breeding of precious ornamental plants like EOH
and expanding the application potential of AG-1 type
polysaccharides such as EPS.

2 | MATERIALS AND METHODS

2.1 | Materials and reagents

EOH was collected from the EOH planting demonstra-
tion base of Sichuan Yuanlan Agricultural Development
Co., Ltd. The extraction process of EPS is as follows, the
petals of EOH were dried and subsequently pulverized
into a powder. The polysaccharide was then extracted
from the powder using the hydroalcoholic precipitation,
resulting in a purity level of 95% and an average
molecular weight of 5.577 x 10° Da.

CTX (C849559) was purchased from Shanghai
Macklin Biochemical Technology Co., Ltd. ELISA kits
for cytokines and antibodies were purchased from
Quanzhou Ruixin Biotechnology Co., Ltd. and Jiangsu
Meimian Industrial Co., Ltd. Four percent para-
formaldehyde tissue fixation (BL539A), RIPA lysate
(BL504A), protease inhibitor (BL612A), and BCA pro-
tein content assay kits (BL521A) were purchased from
Biosharp Biotechnology Co., Ltd. Lentinan poly-
saccharide (H42022727) was purchased from Hubei
Guangren Pharmaceutical Co., Ltd. (Jiang, Wang,
et al., 2021). Lactic acid assay kit (A019-2-1) was pur-
chased from Nanjing Jiancheng Bioengineering Institute.
Hematoxylin and eosin (H&E) staining kits (G1120)
were purchased from Solarbio Science & Technology
Co., Ltd. and periodic-acid-schiff staining (PAS) dye
(G1008) was purchased from Servicebio Technology
Co., Ltd. All other chemical reagents were of analytical
grade.

2.2 | Animals and treatment

A total of 35 male specific pathogen-free (SPF) Kunming
mice, aged 4 weeks and weighing between 18 and 22
grams, were purchased (HE-12-54-04) from Dashuo
Laboratory Animal Co., Ltd. The schematic diagram of
the experiment is shown in Figure 1 A. They were housed
in standard indoor conditions (20-26°C, 40%-70%
humidity) with a 12-h light/12-h dark cycle and had ad
libitum access to standard maintenance feed and water.
After 3 days of acclimatization feeding in SPF-level ex-
perimental animals at Chengdu Medical College, the
animals were randomly divided into five groups of seven
animals each, namely, blank control group (CON),
model control group (MDC), lentinan polysaccharide
positive control group (LNP), EPS low dose group
(EPL), and EPS high dose group (EPH). CTX is a
frontline chemotherapy drug used to treat various

cancers and autoimmune diseases (Hao et al., 2019;
Madondo et al.,, 2016; Manente et al., 2018). None-
theless, the long-term use of CTX can also have harmful
effects on immune organs such as the thymus and spleen,
disrupt the gastrointestinal mucosal barrier, and lead to
an imbalance in the gut microbiota (Iqubal et al., 2019).
Therefore, CTX is often used to construct immune-
suppressed animal models, especially in mouse models
with anatomical structures, including the gastrointestinal
tract, and immune systems similar to humans, rather
than in zebrafish (Kamareddine et al., 2020). Referring to
the method of Zhou et al. for immunosuppression
modelling in mice (Zhou et al., 2018), normal saline was
injected intraperitoneally into the CON group and the
CTX (70 mg/kg bw per day) was injected into the other
groups during Days 1-5 of the experiment. Due to the
biting of mice from one another and the immuno-
suppressive toxicity of the drug leading to a high risk of
mortality, the final number of successfully modelled mice
was determined to be 5 per group. On Days 6-19, the
CON and MDC groups received normal saline via
gavage, while the LNP group was administered lentinan
polysaccharide (5 mg/kg/d bw per day) by gavage (con-
verted based on the manufacturer's recommended human
dose) (Wei et al., 2010), and the corresponding doses of
EPS were gavaged in the EPL (25 mg/kg/d bw per day)
and EPH (35 mg/kg/d bw per day) groups. On Day 19,
faeces were collected from each group. On Day 20, after
anesthetizing the mice by isoflurane, the mice were
humanely killed by cervical dislocation and other tissues
were collected. During the experimental period, the mice
were observed daily and their body weight and diet were
recorded.

2.3 | Blood and organ collection

After anesthetizing the mice with isoflurane, the eyes
were removed and blood was collected, left at room
temperature for 20 min, then centrifuged at 3500 r/min
for 20 min, and the supernatant was taken to obtain
serum, which was frozen at —80°C in the refrigerator for
later indexing. Then the mice were humanely killed by
cervical dislocation, and the organs including liver, thy-
mus, spleen, kidney and colon were removed and
weighed. The organ index was calculated as organ weight
(mg)/body weight (g) x10.

2.4 | H&E staining of the spleen, thymus
and colon

Spleen, thymus and colon tissues were fixed in 4%
paraformaldehyde tissue fixative for 48 h, dehydrated in
alcohol, and then processed into paraffin-embedded
blocks. Sections (3—5 pum thick) were stained with the
H&E staining solution to observe histological changes.
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FIGURE 1 Effects of EPS on apparent parameters and cytokine levels in immunocompromised mice. The schematic diagram of the experiment
(A). Changes in body weight (B) and diet of mice (C). Differences between groups in (D) thymus index, (E) spleen index, (F) kidney index, and
(G) liver index of mice. Expression levels of mice (H) serum TNF-a, (I) serum IgA, (J) spleen IgG, (K) spleen IgM, and (L) liver C3. H&E-stained
histological sections of mice (M) thymus (100x) and spleen (40x). CO represents cortex, M represents medulla, yellow arrows indicate thymic
corpuscle, red arrows indicate necrotic cells; WP represents white pulpa, RP represents red pulpa, CA represents central artery, and T represents
spleen trabeculae. Data are expressed as mean = SEM, n=15. *p <0.05, **p <0.01, ***p <0.001, vs. the MDC group.
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Images were acquired using the CI-L plus light micro-
scope (Nikon) (Spleen: 40X magnification, thymus: 100X
magnification, and colon: 200X magnification). The
depth of the five intact colonic crypts in each colonic
tissue section was measured using Nis-elements analysis
software (version: 5.42.00, Japan) and the mean value
was calculated. The description of pathological sections
was based on the relevant literature method (Jiang, Hou,
et al., 2021; Zhang et al., 2019).

2.5 | PAS staining of the colon

The number of stainable goblet cells in the tissue (3—5 um
thick) of colon sections was determined by PAS method.
After staining the colon tissue, then full-field images were
taken using a light microscope (40X magnification) and
the stainable goblet cells in the field of view were counted
using Image-J (version:1.8.0.172).

2.6 | Determination of immunoglobulins
and cytokines in serum, colon and liver

Blood samples were collected and serum was separated, and
Tumor necrosis factor-alpha (TNF-o) and immunoglobulin
A (IgA) levels were measured with ELISA kits. One hun-
dred mg of spleen, liver and colon tissues, respectively, were
mixed with 900 pL of phosphate-buffered saline (PBS)
and homogenized thoroughly, centrifuged for 20min
(8500 r/min, 4°C), and the supernatants were collected to
measure protein concentrations for immunoglobulins (IgM,
IgG), complement 3 (C3), Secretory IgA (sIgA), interleukins
(IL-10, 1IL-17), interferon-y (IFN-y), transfer growth
factor beta3 (TGF-f3), tight junction-associated proteins
(tricellulin, occludin), and mucoprotein 2 (MUC2) expres-
sion levels. The assay was performed according to the
instructions provided by the ELISA manufacturer.

2.7 | Determination of lactic acid content in
colon and faeces

Colon tissue samples were added to nine times the vol-
ume of PBS at a ratio of 100 mg to 900 uL, and faeces
samples were added to three times the volume of PBS
at a ratio of 100 mg to 300 uL, centrifuged for 20 min
(3500 r/min, 4°C), and the supernatant was collected and
then the lactic acid concentration was determined by
enzymatic colorimetric assay (Lin et al., 2022).

2.8 | Immunohistochemistry

Colon tissue sections were treated with xylene and gradient
ethanol, incubated with 0.1% Tritonx-100 and rinsed with
PBS. Sections were serially sealed with BSA and serum.

Sections were incubated with primary antibodies GPRSI,
Wnt3a, and Ctnnbl (B-catenin) at 4°C overnight, followed
by incubation with secondary antibodies at room temper-
ature, dropwise addition of horseradish peroxidase-labelled
streptomycin protein followed by development with DAB
developer. During microscopic observation, five random
fields of view were obtained and photographed (200x
magnification). The quantitative automatic measurement of
the positive area is defined by the Image]J software (NIH)
and expressed as Average optical density (AOD) values.

2.9 | 16S rRNA sequencing of gut microbiota
Total faccal DNA was extracted according to the instruc-
tions of the E.ZN.A®soil DNA kit (Omega Bio-Tek)
and detected by 1% agarose gel electrophoresis. The V3-V4
hypervariable region of the bacterial 16S rRNA gene
was amplified using universal primers 338 F (5-ACTC
CTACGGGAGGCAGCAG-3) and 806 R (5-GGACTAC
HVGGGTWTCTAAT-3). The PCR products were re-
covered using 2% agarose gels, purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences), and quan-
tified using QuantiFluor™-ST (Promega). PE libraries were
created using TruSeqTM DNA sample preparation kit and
sequenced on the Illumina Miseq PE300 platform (Illumina)
according to the standard protocol of Majorbio, Inc.
PacBio raw reads were processed using SMRTLink
(version 8.0) to obtain demultiplexed circular consensus
sequence (CCS) reads with at least three full passes and 99%
accuracy. CCS reads were barcode-identified and length-
filtered, removing sequences <1000 bp or >1800 bp. Opti-
mized CCS reads were clustered into operational taxonomic
units (OTUs) using UPARSE 7.1 at 97% sequence simi-
larity. The most abundant sequence for each OTU was
chosen as the representative sequence. Chloroplast
sequences were manually removed from the OTU table.
Paired-end forward and reverse sequences were merged
using FLASH software (version 1.2.11). The Silva database
was used for sequence alignment, and BLAST was used to
annotate species information for each OTU. Alpha-diversity
and beta-diversity were analyzed based on the abundance of
OTUs using the R package. The linear discriminant analysis
(LDA) and LDA effect size (LEfse) were used to analyze
the dominant bacterial communities between groups. The
functional composition of microbial communities from
amplicon sequencing results was predicted using phyloge-
netic investigation of communities by reconstruction of
unobserved states 2 (Picrust2). One-way correlation net-
works and correlation heatmap were drawn using Spear-
man rank correlation coefficient analysis.

2.10 | Data analysis

Each experiment was repeated at least three times and
statistical analysis was performed using GraphPad Prism
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(version: 8.0, GraphPad Software, Inc.) and data were
expressed as mean and standard error (mean * SEM).
The Shapiro-Wilk test was used to assess the normality
of the data. Comparisons of biochemical index data
between groups with MDC group were performed
using the Student's ¢-test, and the nonparametric
Mann—Whitney test was used to determine the statistical
significance of alpha-diversity and Picrust2 measure-
ments. Differences were considered statistically signifi-
cant when p <0.05.

3 | RESULTS
3.1 | Effects of EPS on epistatic parameters
and cytokine levels

After 2 weeks of polysaccharide intervention, compared
with the MDC group, the immunosuppressed mice inter-
vened with EPS and lentinan polysaccharide did not sig-
nificantly improve the body weight, diet, spleen index,
kidney index and liver index (Figure 1B,C.E-G) (p > 0.05),
but showed a certain trend of improvement for the above
indices, and the improvement trend was similar to that of
the CON group. Notably, mice treated with EPS signifi-
cantly altered the thymus index compared to MDC group
and significantly increased the levels of serum TNF-a,
serum IgA, spleen IgG and IgM (Figure 1D,H-K;
p <0.05). Interestingly, EPS exhibited extremely strong
activity in promoting C3 synthesis in the liver (Figure 1L;
p <0.05), which we speculate that this may be related to the
monosaccharide components of AG-I itself, which are rich
in galactose and arabinose (Togola et al., 2008).

The histopathological condition of the thymus and
spleen was visualized and evaluated through H&E
staining (Figure 1M). There was no obvious boundary
between the cortex and medulla in the thymus of MDC
group mice, few thymus corpuscles and more necrotic
cells. The spleen of MDC group mice showed a lighter
color and less obvious boundary between red and white
pulpa, indicating a significant decrease in the number of
lymphocytes. Spleen trabeculae were visible, while the
central artery was difficult to see. These results demon-
strated the toxic damaging effect of CTX on thymus and
spleen. Compared with the MDC group, the mice in all
three polysaccharide intervention groups showed
improvement in the above parameters, with the high dose
of EPS showing a slightly better improvement than the
low dose of EPS. In conclusion, EPS has the potential to
alleviate CTX-induced immune damage.

3.2 | EPS intervention repaired damaged
intestinal barrier

The intestine is a vital immunological organ equipped
with mechanical, chemical, immune, and biological

barriers that defend against pathogens and maintain
internal equilibrium. When the body's immune system is
compromised, intestinal mucosal immunity, a crucial
component of the immune defense, is also adversely
affected. The integrity of intestinal barrier function is
essential for maintaining healthy homeostasis in the
organism. MUC?2, secreted by goblet cells, plays a central
role in constituting the chemical barrier of the intestinal
mucosa, which lubricates the intestine and antagonizes
pathogenic bacteria (Birchenough et al., 2015). After
EPS intervention, especially at high doses, the number
of colonic stainable goblet cells and the expression level
of MUC2 were significantly increased in immuno-
compromised mice (Figure 2A-C; p <0.05). The depth of
intestinal crypt can represent the integrity of intestinal
morphology (Bao et al., 2022), and both EPS and
lentinan polysaccharide significantly increased the length
of colonic crypt compared with the MDC group
(Figure 2A.D; p <0.05). In addition, mice in the MDC
group had loose intestinal mucosal and muscular con-
nections and showed lymphocytic infiltration. The mice
in the three polysaccharide intervention groups improved
in the injury mentioned above, the changes in the EPL
group were slightly weaker but still better than those in
the MDC group (Figure 2A).

CTX causes disruption of the mucosal mechanical
barrier in mice, leading to increased intestinal permeability.
Compared to the MDC group, both lentinan poly-
saccharide and EPS significantly increased the expression
level of intestinal tricellulin in immunosuppressed mice
(Figure 2E; p <0.05), but not that of occludin (Figure 2F;
p>0.05). SIgA limits the growth of bacterial pathogens by
shaping resident microbial communities and by immune
rejection through enhancing host protective immunity and
playing an important role in intestinal barrier protection
(Doron et al., 2021). The results showed that sIgA
expression levels were significantly lower in the colon of
mice in the MDC group compared to the CON group
(Figure 2G; p < 0.05), whereas high doses of EPS improved
intestinal sIgA expression levels in immunocompromised
mice. IFN-y, IL-10, TGF-3, and IL-17 are cytokines
secreted by T-helper cells Thl, Th2, Treg, and Thl7,
respectively. Compared with the CON group, the expres-
sion levels of IFN-y, IL-10, TGF-B3, and IL-17 in the colon
of MDC mice were significantly reduced, indicating that
the intestinal immune barrier of immunosuppressed mice
was damaged, and the EPS intervention reversed this
immune damage and showed a dose-dependent improve-
ment (Figure 2H-K; p <0.05).

In conclusion, the above results suggest that EPS can
restore CTX-induced damage to the intestinal chemical,
mechanical and immune barriers. This includes increas-
ing the number of colonic stainable goblet cells, im-
proving intestinal morphological disorders and crypt
depth, promoting the expression levels of MUC2 and
tricellulin, and promoting the secretion of sIgA and
T-helper cell-associated cytokines.



DAI ET AL.

(A) CON MDC LNP
[=2}
c
E
S
wv
(7]
<
[N
o
(=4
£
©
&
w
)
(B) (©) (D) (E) (F)
0 8- s
§ 1000 58 a g 10
s — o )
§ 800 . Dos E £ ES
c * . £ 2 2 6 [=)]
3 600 2 < = .
8 & ) £ c
0.4 c 5 =
£ ) G = -]
w 400 3 - ® 4 3 4
= = B o4 g
S 200 c 02 > = ’
@ -] (&} 5 c
2 3 s s
8§ o 0.0 3§ 2- S o
(G) (H) ) () (K)
5 35 500 5250 5 600 5%
a | . g |3 . a, | = & a
£ 2 ¥ x € 500 T £ 50
s E 400 & ) 5
3 2 : Zs0 2 |3 2
25 = s " g 400 - ~ 40
» £ 300 4 % -
5 20 5 5 5o = 300 5 30
3 3 3 3 3
15 200 0 O 200 20

EEN CON == MDC

LNP WENEPL W= EPH

FIGURE 2 Effect of EPS on the intestinal barrier of immunosuppressed mice. Colon tissue section staining (A) PAS staining (40X) and H&E
staining (200x), (B) number of goblet cells, (D) crypt length. Colonic barrier-associated proteins (C) MUC2, (E) Tricellulin, (F) Occludin, (G) sIgA,
(H) IFN-y, (I) IL-10, (J) TGF-B3, (K) IL-17. Data are expressed as mean = SEM, n=5. *p <0.05, **p <0.01, vs the MDC group. The purple

granules in the colon tissue section represent the stained goblet cells, CR indicates crypt, MU indicates the muscle layer, and yellow circle indicates

lymphocyte infiltration.

3.3 | EPS changed the structure and diversity
of gut microbiota

To investigate the impact of EPS on gut microbiota,
fecal samples from each group of mice were subjected
to 16S rRNA sequencing analysis. The dilution curve
analysis indicated that the curves of all samples
exhibited a flattened trend (Supporting Information
S1: Figure S2, A,B), suggesting that the sequencing
data reached saturation and effectively captured
the majority of species within the gut microbiome
community.

The structure of the gut microbiota of mice in the
MDC and CON groups was found to be significantly
different by principal component analysis (PCA)
(Figure 3A; p<0.05). After EPS intervention, the gut

microbiota of mice in the EPL and EPH groups were
significantly altered compared with those in the MDC
group (Figure 3C,D; p <0.05), and the ability of EPS to
alter the structure of gut microbiota showed a certain
dose-dependence, while the effect of lentinan poly-
saccharide was not significant (Figure 3B; p>0.05).
Partial least squares discriminant analysis (PLS-DA) was
used to classify the gut microbiota structure of all groups
of mice (Figure 3E), and the results showed that the gut
microbiota of mice in the three polysaccharide inter-
vention groups clustered together, while the gut micro-
biota of mice in the CON and MDC groups clustered
into one category each.

The results of diversity difference analysis on the
OTU level showed that the OTU number, chaol index
and ace index of gut microbiota of mice in the MDC
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FIGURE 3 Effect of EPS on intestinal microbial diversity in immunosuppressed mice. PCA on OTU level (A) MDC vs CON, (B) MDC vs
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FIGURE 4 The impact of EPS on the gut microbiota relationship of immunosuppressed mice. One-way correlation networks of the
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line indicate positive and negative correlations, respectively, and the width reflects the strength of the correlation.

group were significantly higher than those of other
groups (Figure 3F-H; p <0.05), indicating that the gut
microbiota richness of mice in the MDC group was sig-
nificantly higher than those of other groups. In addition,
compared with the MDC group, the EPH and CON
groups showed an increase in Simpson index and a
decrease in Shannon index (Figure 31J; p <0.05), indi-
cating a significant decrease in gut microbiota diversity.
Similar to the OTU level results in terms of species
number performance at the genus level, mice in the three
polysaccharide intervention groups had lower intestinal
genus level species diversity than the MDC group
(Supporting Information S1: Figure S2, C). In addition,

the interactions between genus were visualized by one-way
correlation networks. The results showed a higher degree
of network complexity in the top 30 genera correlation
networks in terms of abundance, especially for the
positive relationships, in the EPL and EPH groups than
in the MDC group (Figure 4; Supporting Information
S1: Table S1).

In summary, the aforementioned results suggest that
EPS has the ability to influence the diversity and abun-
dance of gut microbiota in immunosuppressed mice.
Additionally, EPS is capable of influencing the structure
of the gut microbiota and impacting the interrelation-
ships among intestinal microorganisms.
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3.4 | EPS treatment affected the gut
microbiota of immunocompromised mice

We conducted an analysis of the dominant phylum in the
fecal samples of different groups of mice (Supporting
Information S1: Figure S3.A). The results showed that the
composition of dominant phylum was similar across all
groups, with Firmicutes and Bacteroidota being the pri-
mary phylum, followed by Campilobacterota and Proteo-
bacteria. Additionally, we analyzed the composition of the
top 30 genera in the gut microbiota (Supporting Informa-
tion S1: Figure S3.B). The results indicated that poly-
saccharide intervention led to changes in the abundance of
certain genus among the groups, particularly Lactobacillus.
Specifically, the abundance of Lactobacillus was signifi-
cantly restored in the EPH group. Moreover, some genera
(outside the top 30) with relatively low abundance exhibited
significant differences between groups (Supporting Infor-
mation S1: Figure S4), and previous studies have shown
that these genera are related to gut immunity. The inter-
vention of EPS had, to some extent, affected the abundance
of these genera in the gut. Tyzzerella is found in
higher abundance in the gut microbiota of Crohn's disease
patients and is associated with intestinal inflammation
(Olaisen et al., 2021). Supplementing gut butyrate leads to
an increase in Rikenella abundance (Yu et al., 2019),
reflecting a possible deficiency of butyrate in the gut of
immune-deficient mouse models under CTX toxicity. The
Family_XIII_AD3011_group and Escherichia-Shigella are
negatively correlated with the concentration of acetate in
the intestinal lumen (Yi et al.,, 2024). Anaeroplasma is
positively correlated with the severity of experimental
autoimmune encephalomyelitis (He et al., 2019).
Escherichia-Shigella may be important indicators of gut
sepsis (Zuo et al., 2023), while Candidatus Arthromitus is a
recently discovered symbiotic bacterium associated with the
maturation of gut immune function (Van Praet et al., 2015).
Additionally, the abundances of low-prevalence bacterial
genera such as Defluviitaleaceae_UCG-011, unclassified_f_
Anaerovoracaceae, Caldicoprobacter, Anaerovorax, Pre-
votellaceae_NK3B31_group, Butyricimonas, norank_f UCG-
010, and unclassified_f Lachnospiraceae changed following
EPS intervention. These bacteria may serve as potential
biomarkers for improving immunosuppressive conditions.
We additionally used LEfse measurement to deter-
mine the differential taxa between the polysaccharide
intervention groups and the MDC group. Significant
differences were found during the comparison.
Compared with the two groups intervened by EPS
(Figure 5C,D), Caldicoprobacter, norank_f _norank_o_
Rhodospirillales, Anaerovorax, Enterococcus, Tyzzer-
ella , Butyricimonas, etc. were more abundant in MDC
group, while the abundance of Erysipelotrichaceae and
Lactobacillus decreased significantly, and treatment with
EPS could restore the levels of these microbes in the in-
testines of immunosuppressed mice to levels similar to
those in normal mice (Figure 5A,B). Related study

suggests that Lactobacillus, which uses carbohydrates for
fermentation and produces lactic acid as the main end
product, is able to create an acidic intestinal micro-
environment, an environment that is not conducive to
the survival of pathogens (Goldstein et al., 2015). It has
also been demonstrated that Lactobacillus can promote
the production of IgA, IL-6, IL-10, IFN-y, and tumor
necrosis factor by intestinal Peyer's patches cells as a way
to regulate intestinal immunity (Kotani et al., 2014). In
addition, Erysipelotrichaceae, which belongs to the same
phylum as Lactobacillus, can produce adjuvant-like ef-
fects in the intestine, enhancing the response of T-helper
17 cells (Th17) and modulating immunity (Miyauchi
et al., 2020). It is worth noting that a previous study has
indicated that dietary fermentable fiber can enhance the
metabolism of fiber by the gut microbiota, leading to
alterations in the ratio of Firmicutes to Bacteroidota and
an increase in the concentration of circulating short-
chain fatty acids (SCFAs) (Trompette et al., 2014).
However, our results did not demonstrate such effects, as
there were no significant differences observed in either
the individual abundance or the ratio of Firmicutes to
Bacteroidota between groups (Figure 5E; Supporting
Information S1: Figure S3.A). The above results
indicated that EPS treatment affected the gut micro-
biota of immunocompromised mice, particularly con-
tributing to the restoration of Lactobacillus abundance
in the gut.

3.5 | Correlations of genera with immune
parameters, functional changes in gut microbiota
across groups

The correlation analysis between the top30 genera and
metabolic parameters showed that Lactobacillus was
positively correlated with most immune parameters,
which indicated that Lactobacillus may play an impor-
tant role in mediating the recovery of immune function in
response to polysaccharide intervention. In addition,
Parabacteroides was negatively correlated with some
immune parameters (Figure 6A). To further reveal the
correlation between functional changes in gut microflora
and improved intestinal immunity in each group, we
used Picrust2 to predict the functional composition of
microbial communities from amplicon sequencing results
(Douglas et al., 2020). Notably, the predicted abundance
of ko02060: Phosphotransferase system (PTS) in the
KEGG pathway level3 abundance statistics was signifi-
cantly enriched in the three polysaccharide intervention
groups (p <0.05), but not in the CON group (p > 0.05),
compared to the MDC group (Figure 6B). This differ-
ence may be due to polysaccharides intervention, where
monosaccharides such as glucose and fructose enter the
bacterium via PTS transport and phosphorylation when
entering the homolactic fermentation pathway of lactic
acid (Lauret et al., 1996). In addition, the KEGG module
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abundance statistics of M00632 (Leloir pathway) was
significantly enriched in the EPL group (p <0.05) and
showed some increasing trend in the EPH and LNP
groups (p >0.05), which is the metabolic pathway that
degrades galactose to produce lactic acid (Figure 6C). In
the abundance statistics of the Metacyc database,
ANAEROFRUCAT-PWY (homolactic fermentation)
and P122-PWY (heterolactic fermentation) showed a
significant increase (p <0.05) after the intervention of
EPS compared to the MDC group, although this increase
was not synchronized with the dose (Figure 6D). How-
ever, after combining the predicted abundance of the
total lactic acid fermentation pathway in each group, the
results showed that the abundance of lactic acid fer-
mentation was significantly lower in the MDC group

than in the other groups (Figure 6E; p<0.05). Gut
microbiota-derived SCFAs are known to play a crucial
role in maintaining intestinal immune balance. Interest-
ingly, in our study, the pathways related to gut microbial
fatty acid metabolism did not exhibit significant differ-
ences between the groups (Figure 6F). This discovery is
consistent with the absence of significant changes in the
abundance of Firmicutes and Bacteroidota, as observed
in previous results (Figure SE).

The reduced lactic acid fermentation capacity of the
gut microbiota might have been a functional manifesta-
tion of the gut microbiota in CTX-induced immuno-
compromised mice, whereas after the intervention of
lentinan polysaccharide and EPS, the ability of the gut
microbiota to ferment lactic acid converged with that of
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the CON group mice. In addition to the inhibition of the (Garrote et al., 2015). Furthermore, a study by Morita
growth of harmful intestinal bacteria by lactic acid as et al. revealed that lactic acid can activate the GPR31
mentioned above, lactic acid also has a wide range of  receptor to enhance dendritic protrusion of small intes-
organismal immunomodulatory effects. Lactic acid can tinal CX3CR1 cells and promote tubular antigen uptake
modulate the key functions of several key players of the (Morita et al., 2019). Therefore, combined with the
immune system, such as macrophages and dendritic cells  results of LEfse analysis (Figure 5), EPS-induced increase
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in intestinal /Jactobacillus abundance and lactic acid
content in immunocompromised mice may be involved in
the immune recovery process of immunosuppressed mice.

3.6 | Lactic acid promoted the expression of
intestinal epithelial repair-related proteins at the
bottom of colonic crypts

The intestinal epithelial tissue of the organism is highly
sensitive to chemotherapeutic agents and intestinal damage
is the main damage during chemotherapy. Lactobacillus is
usually considered to contribute to the protection of the
intestinal mucosa, and lactic acid as an end product of
Lactobacillus fermentation plays an important role in the
repair of the intestinal barrier. A study by Okada et al.
demonstrated that lactic acid derived from flora enhances
the proliferation of colonic epithelial cells and maintains
the normal morphology and function of intestinal epithe-
lial cells (Okada et al., 2013). Additionally, a study by Lee
et al. revealed that lactic acid from the microbiota stimu-
lates intestinal stem cell proliferation through Paneth cells
and intestinal stromal cells via the Wnt/B-catenin signalling
pathway, thereby repairing intestinal damage caused by
chemotherapy and radiotherapy and maintaining the
intestinal physical barrier (Lee et al., 2018). To verify the
reparative effect of intestinal lactic acid on intestinal
damage in mice with CTX-induced immunosuppression,
we employed immunohistochemistry to visually confirm
the expression sites and levels of factors related to intes-
tinal barrier repair in the colons of mice from various
groups (Figure 7A). Firstly, after testing the lactic acid
content in the faeces and colon (Figure 7B,C; p <0.05), the
results were consistent with the results predicted by
Picrust2, and the lactic acid content in the intestine and
colon of mice in the three polysaccharide intervention
groups was significantly higher than that in the MDC
group. The content of lactic acid in intestinal feces of mice
in EPH group was 3.4 times higher than that in MDC
group. Lactic acid derived from the microbiota aids in
repairing intestinal damage caused by chemotherapy
drugs, primarily through a Gpr81-dependent mechanism
by activating the expression of proteins such as wnt3a and
B-catenin at the bottom of the colonic crypts to promote
intestinal epithelial development (Lee et al., 2018).
Quantitative results from ImageJ software showed that the
expression of Gpr8l, Wnt3a, and B-catenin was mainly
concentrated at the bottom of the colonic crypts in the
EPH group, and the expression levels were significantly
higher than those in the MDC group (Figure 7D-F;
p<0.05). This helps to maintain the stemness of
Lgr5+ intestinal stem cells within the intestine and repair
the damaged intestinal physical barrier (Lee et al., 2018).
The above evidence suggests that lactic acid from the
intestine may play a key role in the recovery of the
intestinal structural physical barrier during the process
facilitated by EPS.

4 | DISCUSSION

Recently, many studies have demonstrated that immune
activation plays a crucial role in the diverse pharmaco-
logical effects of herbal polysaccharides (Liu et al., 2022;
Wang et al., 2021; Zeng et al., 2019). In our study, CTX
caused damage to the immune organ thymus, spleen and
intestine. However, histopathological results showed that
EPS could repair structural damage in these immune
organs and increased the number of colonic stainable
goblet cells. In particular, thymic index was significantly
restored in mice after EPS intervention. TNF-a is a plei-
otropic pro-inflammatory cytokine involved in activating
innate and adaptive immunity. C3 is synthesized mainly
by liver and macrophages and is involved in various
adaptive immune responses. The monosaccharide com-
position of EPS is dominated by galactose and arabinose,
which together account for more than 60% of the mono-
mer content. This type of polysaccharide is known as
arabinogalactans, and is associated with good activity in
the complement system (Togola et al., 2008). This prop-
erty is not possessed by most lentinan polysaccharide
(Wang et al., 2020). The results showed that EPS signifi-
cantly increased serum TNF-o levels and liver C3 ex-
pression. IgA, IgG, and IgM can reflect the humoral
immune function of the animal body, and the results
indicated that EPS stimulated the secretion of the above
antibodies in immunosuppressed mice.

EPS improved the intestinal chemical and immune
barriers of immunosuppressed mice by increasing the
secretion of MUC?2 by intestinal goblet cells, improving
the expression of tricellular tight junction proteins, and
restoring the levels of sIgA, an important immune barrier
component. [FN-y, IL-10, TGF-f3, and IL-17 are cyto-
kines secreted by T-helper cells Thl, Th2, Treg, and Thl7,
respectively, which help balance the immune response of
the body. Under conditions of immunocompromise, the
ability of helper T cells to proliferate, disseminate, and
activate other immune cells responsible for direct immune
responses is diminished (Duffy et al., 2011). The results
showed that EPS effectively stimulated the release of
immune factors, enhancing the intestinal immune barrier.
Additionally, EPS showed better recovery in some indices
compared to the reference dose of lentinan poly-
saccharide. Together, these results suggest that EPS has
the activity to repair the intestinal barrier in im-
munosuppressed mice. It is necessary to mention that,
being an AG-I, it can also demonstrate notable im-
munomodulatory effects by stimulating the proliferation
of human peripheral blood mononuclear cells and en-
hancing their production of interleukin (Yin et al., 2012).

The immune system interacts extensively with the
intestinal microbiota (Wastyk et al., 2021). Following
immunocompromise, the body typically exhibits
dysbiosis of the gut microbiota. A similar phenomenon
was observed in this study following modeling with CTX
(Li et al., 2021). However, EPS was able to improve the
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FIGURE 7 EPS intervention promoted the expression of Gpr81, Wnt3a and B-catenin at the bottom of colonic crypts. Immunohistochemical
staining of (A) Gpr81, Wnt3a and B-catenin in colon tissue (200x). (B) Lactic acid content of faeces and (C) colon. Relative expression of (D) Gpr81,
(E) Wnt3a and (F) B-catenin, expressed as AOD values. Data are expressed as mean = SEM, n=15. *p <0.05, **p <0.01, vs the MDC group.

composition of the intestinal microbiota after EPS
intervention, the a-diversity and B-diversity of gut mi-
crobiota in mice improved and were similar to the
normal group, but different from the model group. The
a-diversity of gut microbiota in mice after EPS inter-
vention had a large variation within the group, but this

was slightly improved in the group that received lentinan
polysaccharide intervention. We think that the variation
in the interaction between the intestines of different mice
and EPS with large molecular weights was the reason for
this difference. A diverse network of microbial members
is a characteristic of a healthy gut microbiota (Van den
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Abbeele et al., 2013). The EPS intervention increased the
interaction of the main intestinal genera. At the family
level, the effect of CTX led to a decrease in the abun-
dance of Erysipelotrichaceae and Lactobacillaceae in
mice. At the genus level, the action of CTX resulted in
decreased abundance of mice Lactobacillus. Erysipelo-
trichaceae and Lactobacillus have been reported to reg-
ulate immunity in a specific manner (Kotani et al., 2014;
Miyauchi et al., 2020), and EPS intervention resulted in
increased abundance of both. In addition, EPS reduced
specific genus, such as Butyricimonas, which is negatively
associated with intestinal immune factors and anti-
microbial peptides (Xia et al., 2021), Tyzzerella, which is
negatively associated with IFN-y, IL-4 and IgG (Huang
et al., 2021), Family_XIII_AD3011_group, which is neg-
atively associated with 5-hydroxytryptamine (Li
et al., 2022), and Enterococcus involved in the impair-
ment of epithelial barrier integrity (Steck et al., 2011).
These results suggest that EPS helped to restore gut
microbiota and enhance the intestinal biological barrier
in immunosuppressed mice.

Further prediction of intestinal function showed that
CTX-induced immunosuppressed mice had a reduced
abundance of both homo- and hetero-lactic fermentation
pathways. The total lactic fermentation abundance sta-
tistics revealed that the mice in the model group had a
significantly lower abundance compared to those after
lentinan polysaccharide and EPS intervention. This
finding is consistent with a significant decrease in the
abundance of Lactobacillus in the model group, which is
similar to the discoveries of Florez and Ying et al.
(Florez et al., 2016; Ying et al., 2020). Low doses of EPS
significantly increased the abundance of intestinal Leloir
pathway in mice, which was not observed in lentinan
polysaccharide or high doses of EPS. This could be due
to the fact that moderate amounts of galactose in EPS
are more beneficial for gut microbiota to produce lactic
acid via fermentation in the Leloir pathway. Mammalian
digestive enzymes are unable to digest most complex
carbohydrates and plant polysaccharides, which are
metabolized by SCFAs-producing microorganisms,
which have a wide range of immunomodulatory activi-
ties, but in our study, no significant changes in the pre-
dicted abundance of SCFAs production pathways and
key enzymes or related enzymes were observed
(Figure 6F) (Supporting Information S1: Table. S2).
Furthermore, the role of lactic acid differs from one of the
SCFAs, butyric acid (differentiated colon cells metabolize
butyrate, possibly preventing butyrate from reaching stem
cells in the crypts, and butyrate is an effective inhibitor of
intestinal stem/progenitor cell proliferation at physiologi-
cal concentrations) (Kaiko et al., 2016).

Based on the increase of specific microbes (Lactoba-
cillus) and predictions from 16S gene functionality, we
hypothesized that EPS might enhance the levels of lactic
acid in the gut. Altering lactic acid abundance may rep-
resent one of the effective mechanisms by which EPS

improves intestinal barrier function through modulating
the gut microbiome. Consequently, we specifically mea-
sured the lactic acid content in intestinal feces and tissues
to validate this hypothesis. In this regard, the activity
exhibited by the lentinan polysaccharide as a positive
control was indeed noteworthy. This might have been
related to the monosaccharide composition of lentinan
polysaccharide and their potent overall immune-
regulating effects (Motta et al., 2021; Ren et al., 2018).
However, it is worth noting that EPS also produced a
similar effect. Lactic acid derived from the gut micro-
biome can not only enhance the intestinal immune
barrier (Morita et al., 2019) but also activate the ex-
pression of proteins such as Wnt3a and p-catenin at the
bottom of the colonic crypts through a Gpr8l-
dependent mechanism, promoting intestinal epithelial
development to repair intestinal damage (Lee
et al., 2018). This is important for various functions
including early embryonic development, self-renewal of
hematopoietic stem cells, and maintaining the stability
of intestinal tissues. Our results indicated that EPS
intervention significantly restored the levels of lactic
acid in the feces and colon of mice compared to the
model group. Moreover, the expression of key proteins
such as Wnt3a and B-catenin, activated by the lactic
acid receptor-dependent mechanism, significantly
increased at the bottom of the colonic crypts. This plays
a crucial role in maintaining the stemness of Lgr5+
intestinal stem cells in the gut (Wu et al., 2020). The
above results suggest that EPS may enhance the gut
immune response in mice induced by CTX through the
modulation of the gut microbiome.

It is necessary to mention that several studies have
shown that lentinan polysaccharide can significantly alter
the composition of the intestinal microbial community
and significantly affect the abundance of certain micro-
organisms, including lactic acid-producing bacteria of the
genus Lactobacillus and Bifidobacterium (Wang, Chen
et al., 2018; Wang et al., 2019), and promote an increase in
intestinal fecal lactic acid content (Wang, Zhang,
et al., 2018). These studies show that EPS exhibited similar
activity to that of lentinan polysaccharides, but showed
better improvement than the reference dose of lentinan
polysaccharide in some other organismal immune in-
dicators, such as C3, MUC2, and cytokines of colonic T-
helper cells. The dose difference may be one of the rea-
sons, and it may also be related to the large molecule
polysaccharides to increase the volume and viscosity of
intestinal contents and stimulate intestinal peristalsis,
which can affect the activity and distribution of immune
cells in the intestine and thus the function of the intestinal
immune system. In the future, large polysaccharides,
represented by EPS, might also be used due to other
characteristics besides immunity such as food thickeners,
drug carriers, humectants, gelling agents and adhesives,
etc. Therefore, further research and development of EPS
will help to realize its wider application prospects.
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The present study showed that EPS, extracted from EOH
and belonging to AG-I, has a significant immune-
enhancing effect by stimulating the expression of the
immune factors while mitigating the damage of immune
organs. The intestinal immune barrier was also repaired
by EPS, not only by regulating the expression of key
immune factors in the intestine but also by improving the
diversity and overall structure of the intestinal micro-
biota. Moreover, EPS may also promote the repair of the
intestinal physical barrier by activating the expression of
proteins such as Wnt3a and B-catenin at the bottom of
the colonic crypts through a Gpr8l-dependent mecha-
nism. In conclusion, this study highlights the potential
of EPS as a novel ingredient for the development of
immune-modulatory nutraceutical products.
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